DOE Chemical Hydrogen Storage Center of Excellence Novel Approaches to Hydrogen Storage: Conversion of Borates to Boron Hydrides Project ID# ST6 Suzanne W. Linehan, Ph.D. Rohm and Haas Company May 16, 2006 ## **Project Overview** #### **Timeline** - Start: March 1, 2005 - End: February 28, 2010 - 20% complete #### **Barriers** - High cost and energy requirements for regenerating spent fuel from irreversible chemical H₂ storage systems - Lack of understanding of cost and environmental impact of regeneration process | | Budget | | | | | | | | |-----------------------------|----------------|--------|--------|--------|--------|----------|--|--| | | FY05
Actual | FY06 | FY07 | FY08 | FY09 | Total | | | | DOE | \$229K | \$250K | \$353K | \$370K | \$389K | \$1,591K | | | | ROH | \$103K | \$112K | \$176K | \$168K | \$168K | \$727K | | | | Overall 69:31 DOE:ROH Split | | | | | | | | | ## **Objectives** | Overall | Define and evaluate novel chemistries and processes to produce chemical hydrogen storage materials to meet DOE 2010 targets, and with potential to meet 2015 targets Focus on Tier 1 Research: energy efficient and cost-effective options for B-OH to B-H conversion Leverage expertise and experience across Center Tiers 1, 2, 3: engineering requirements, economics, life cycle analysis Support DOE Chemical H₂ Storage Systems Analysis Sub-Group | |---------|--| | FY05 | Define goals/strategies, boundaries/assumptions; establish performance criteria/metrics | | FY06 | Identify chemical pathways and process options Complete computational analysis of SBH regeneration routes (chemical and electrochemical) Develop experimental program Provide engineering support to H₂ Storage Systems Analysis program | ## Approach: Engineering-Guided R&D #### **Potential Regeneration Chemistries** **Identify chemical routes** **Compile & organize concepts** Define basic reaction envelopes & regeneration efficiency Perform preliminary technical & economic viability analysis Establish experimental & computational needs Define leading options **Viable Regeneration Chemistries and Process Options** **Engineering Assessment Reduces Technical Risk** ### Accomplishments - Established performance-based metrics - Identified potential regeneration routes - Metal reduction of borate - Electroreduction of borate - Borane-based routes - Established framework for Analysis - Life Cycle Inventory - Ammonia borane - Conducted preliminary cost and thermal stability assessments # Accomplishments: Performance-Based Metrics | | | | | Baseline Cases | | Performance of Option | | | | |---|---|--|-------------|----------------------------|------------------------------|--|-----------------|-----------------|--------------| | | CRITERIA | | Criticality | Compressed H2
(700 bar) | Liquid H2 | Brown-Schlesinger
Process | Metal Reduction | Electrochemical | Borane-Based | | Ī | 0 | Safety Score (Risk Analysis) | Paramount | | | | | | | | | 1 H2 weight density meets 2010 DOE requirements (2 kWh/kg or 6 wt%) | | Must | | | | | | | | | | H2 weight density meets 2015 DOE requirements (3 kWh/kg or 9 wt%) | Desirable | | | | | • | | | | 2 | H2 volume density meets DOE 2010 requirements (1.5 kWh/L or 0.045 kg/L) | Must | | | | Optio | ons Gene | rated | | | | H2 volume density meets 2015 DOE requirements (2.7 kWh/L or 0.081 kg/L) | Desirable | | | | | | | | | 3 | Storage system cost meets DOE targets:
2010 = \$4/kWh (\$133/kg H2)
2015 = \$2/kWh (\$67/kg) | Must | | | | | | | | | 4 | Operating Ambient Temp. (DOE targets):
2010 = -30/50 (sun) °C
2015 = -40/60 (sun) °C | Must | | | | | | | | | 5 | Loss of Useable Hydrogen (DOE targets):
2010 = 0.1 [(g/h)/kg H2 stored]
2015 = 0.05 [(g/h)/kg H2 stored] | Must | | Key Metrics for Selection of | | | tion of | | | | 6 | Fuel cost meets DOE requirements:
\$2-\$3/ gal gasoline equivalent | Must | | | Regeneration Process: • Fuel cost \$2 - \$3 gal gasoline equivalent • Ideal thermodynamic efficiency based on "burn ratio" of >60% • Measured energy efficiency of 60% | | | | | | 7a | High energy efficiency: Ideal thermo.
efficiency based on 'burn ratio' of > 60% | Desirable | | - Fuel a | | | | | | | 712 | High energy efficiency: Measured onergy efficiency of 60% | Desirable | | | | | | rn | | | 8 | Low capital cost
(complexity, # UOps, technical risk) | Optional | | | | | | | | | 9 | Low operating cost | Optional | | • Meas | | | | | | | 10 | Low raw material (RM) cost | Optional | | | | | | | | | 11 | No Path, Clear Path, or Demonstrated | Optional | | | | | | | | Ī | 12 | Logistics (availability of RM's) | Optional | | | | | | | | Ī | 13 | Low EHS risk | Optional | | | | | | | | | RESULT | | | | | | | | | # Accomplishments: Identification of NaBH₄ Regeneration Chemistries - Metal reduction of borate - Electrochemistry - Borane-based routes - Elemental synthesis - Metathesis reactions - Transfer hydrogenation Construct overall reaction pathway - Theoretical energy efficiency - Reductant regeneration requirements - Energy costs - Raw material cost and availability ## Accomplishments: General Pathway for Metal Reduction of Borate #### **Fast-fail Metrics** - Energetics of both reaction steps - Metal reductant regeneration requirements - Energy costs - Raw material cost and availability Net: $NaBO_2 + 2H_2 + R \rightarrow NaBH_4 + R[ox]$ ``` % Regen Eff = Usable Energy Released / Total Energy Used* = 100 * \Delta G_{cmb} H₂ prod / (\Delta G_{cmb} reductant + \Delta G_{rxn} NaBO₂\rightarrow NaBH₄) = 75% ideal ``` ^{*} Described at DOE H₂ Storage Engineering Analysis meetings, Argonne National Lab (10/12/05) and Palm Springs (11/18/05) # Accomplishments: Leading Metal Systems Identified ## Accomplishments: Electrolytic Reduction of B-OH to B-H - Collaboration with Penn State, LANL, MCEL - Validated analytical methods and electrolytic cell - Established reporting criteria and metrics - Previous Rohm and Haas successes shared with Team - Concepts suggested for improvement - Guide experimental activities - Testing at Penn State University - Two electrolytic process routes identified - Laboratory evaluations - · Boron substrate: borate, alkyl borates, alkoxyborohydrides - Solvent systems: aqueous, non-aqueous - Cathode materials: hydrophobic composites, high hydrogen overpotential systems, gas diffusion cathodes - 1-step direct conversion to NaBH₄ - 2-step conversion through NaBH(OCH₃)₃ # Accomplishments: Positive Results for One-Step Electroreduction | Cathode Material | Catholyte | Current Density,
mAmps/cm² | Current
Efficiency | |--|--|-------------------------------|-----------------------| | Teflon / Ni flag | 0.5M boric acid
1M TMAH | 50 | 2.9% | | LaNi ₅ flag | 10M NaOH
0.5M boric acid
1% TMAH | 20 – 65 | 0.1% | | Nickel / carbon gas
diffusion electrode | 10M NaOH
0.5M boric acid
1% TMAH | 150 | 0.15% | - Advanced cathode materials (hydrophobic cathodes, high surface area cathodes) - High current densities - Alkylammonium salts and other means to minimize water electrolysis and favor borate reduction - Analytical method : RDE voltammetry, detection limit ~50μM NaBH₄ - Typical operating parameters - Membrane divided Astris acrylic resin test cell - Nafion® 324 membrane - Anode : Pt or Pt-clad niobium - 1M NaOH anolyte # Accomplishments: Positive Results for Two-Step Electroreduction #### Overall Process - Trialkylborate → trialkoxyborohydride → borohydride - B(OCH₃)₃ → NaBH(OCH₃)₃ → NaBH₄ - Competing disproportionation reaction: NaB(OCH₃)₄ #### Embodiments - H₂ gas feed - Nonaqueous solvents - Regenerable redox species at cathode ### Positive confirmation by ¹¹B NMR - Conversion of B(OCH₃)₃ to NaBH(OCH₃)₃ - Conversion of NaBH(OCH₃)₃ to NaBH₄ (current efficiencies 15 47%) # Accomplishments: Borane-Based Pathways - Demonstrated chemistry to form NaBH₄ - NaH + $\frac{1}{2}$ B₂H₆ → NaBH₄ - 2/3 Na₂CO₃ + 2/3 B₂H₆ \rightarrow NaBH₄ + 1/3 NaBO₂ + 2/3 CO₂ - Low cost, energy efficient method needed for B₂H₆ (or BH₃) generation - Current industrial routes are inadequate - $3/2 \text{ NaBH}_4 + 2BF_3 \rightarrow B_2H_6 + 3/2 \text{ NaBF}_4$ - 2NaBH₄ + H₂SO₄ → B₂H₆ + 2H₂ + Na₂SO₄ # Accomplishments: Alternate Diborane Pathways | Path | Reaction | | |--------------------------|--|--| | 1. Disproportionation | $6BX_3 + 6H_2 \rightarrow 6HBX_2 + 6HX$
$6HBX_2 \rightarrow \mathbf{B_2H_6} + 4BX_3$
<u>Net</u> : $2BX_3 + 6H_2 \rightarrow \mathbf{B_2H_6} + 6HX$ | (X=F, Cl, Br) | | 2. Hydrogenolysis (Hyd) | $2B(OR)_3 + 6H_2 \rightarrow B_2H_6 + 6ROH$ | $(R=H, C_1-C_4)$ | | 3. Hyd via Red Metal | $2B(OR)_3 + 2AI + 3H_2 \rightarrow B_2H_6 + 2AI(OR)_3$ | (other electro-
positive metals) | | 4. Boron alkyl reduction | $2B(OR)_3 + 2AIEt_3 \rightarrow 2BEt_3 + 2AI(OR)_3$ $2BEt_3 + 6H_2 \rightarrow \mathbf{B_2H_6} + 6EtH$ | | | 5. Amine borane I | 2B(OH) ₃ + 6RNCO → 2B(NHR) ₃ + 6CO ₂
2B(NHR) ₃ + 6CO → $\mathbf{B_2H_6}$ + 6RNCO
Net: 2B(OH) ₃ + 6CO → $\mathbf{B_2H_6}$ + 6CO ₂ | $(R=H, C_1-C_4)$ | | 6. Amine borane II | $2B(OH)_3 + RNH_2 \rightarrow 2B(NHR)_3 + 6H_2O$
$2B(NHR)_3 + 6H_2 \rightarrow \mathbf{B_2H_6} + 6RNH_2$
\underline{Net} : $2B(OH)_3 + 6H_2 \rightarrow \mathbf{B_2H_6} + 6H_2O$ | (R=H, C ₁ -C ₄) | | 7. Carbon | $B_2O_3 + 3C + 3H_2 \rightarrow B_2H_6 + 3CO$ | | | 8. Elemental | $2B + 3H_2 \rightarrow B_2H_6$ | | ## Accomplishments: Analysis Life Cycle Inventory (LCI) Established for NaBH₄ via Current Brown-Schlesinger Process ## Accomplishments: Analysis Comparison of LCI Gross Energy for H₂ at Regeneration Plant Fenceline # Accomplishments: Ammonia Borane Preliminary Cost Assessment Hu et al. J. Inorg. Nucl. Chem. 1977, 39, 2147-2150. - Current cost of ammonia borane is very high because it is priced as a specialty chemical. Low cost AB is needed to meet 2010 system cost targets. - Initial fill chemistry will require NaBH₄ NH₄+ salt route: NaBH₄ + 1/n (NH₄)_nX $$\rightarrow$$ NH₃BH₃ + 1/n Na_nX + H₂ #### **Diborane route:** $$\frac{1}{2}$$ B₂H₆ + NH₃ \rightarrow NH₃BH₃ B₂H₆ from NaBH₄) AB regeneration should not involve NaBH₄ to meet regeneration fuel cost targets # Accomplishments: Ammonia Borane Thermal Stability - DOE Stability Targets - 2010: <0.01% H₂ loss/hr at 50°C - 2015: <0.005% H₂ loss/hr at 60°C - PNNL DSC and TGA data; no adiabatic stability data - Rohm and Haas advanced calorimetry capabilities - ARC (accelerated rate calorimeter) - Uses small samples to test system stability under a wide range of conditions ### **Future Work** ### NaBH₄ Regeneration Routes - Complete compilation of other chemical routes and conduct computational analysis to identify at least one option for laboratory demonstration (12/31/06) - Laboratory demonstration of at least one process with overall efficiency ≥ 80% of theoretical (6/30/07) - Develop conceptual design for laboratory demonstrated regeneration process and associated on-board system (9/30/07) - Go/no go decision for NaBH₄ (9/30/07) #### Ammonia Borane - Develop conceptual AB manufacturing process and cost estimate - Complete reaction calorimetry studies - Determine stability as function of time and temperature (50°C and 60°C) - Determine impact of aging and impurities on stability ### Leverage ROH competencies - Across Center - Support DOE Chemical H₂ Storage Systems Analysis Sub-Group ## Summary ### NaBH₄ Regeneration Routes - Leading metal reduction systems with lower energy usage have been identified - Potential electroreduction routes identified - Completing data-mining of other regeneration options - Building efficient conceptual processes around them - Estimate manufacturing cost #### LCI - Methodology developed for current Brown-Schlesinger process - Build LCI models for regeneration alternatives - Interface with H2A analysis tool #### Ammonia Borane - Lower cost NaBH₄ required - ROH ARC stability data complements PNNL research ### Publications and Presentations F. Lipiecki, "Sodium Borohydride Regeneration and Analysis," Presentation to FreedomCAR Hydrogen Storage Tech Team, Houston, TX, Feb. 16, 2006 ### Critical Assumptions and Issues #### Intellectual Property - Agreements to cover jointly invented IP are critical, but difficult to establish with large number of Center partners - Lack of agreements can inhibit collaboration and coinvention - Separate IP agreements, involving fewer parties, therefore established for each sub-project (i.e., electrochemistry, engineering, etc.)